Secure Data Sharing in Cloud Computing Using Revocable-Storage Identity-Based Encryption

ABSTRACT:

Cloud computing provides a flexible and convenient way for data sharing, which brings various benefits for both the society and individuals. But there exists a natural resistance for users to directly outsource the shared data to the cloud server since the data often contain valuable information. Thus, it is necessary to place cryptographically enhanced access control on the shared data. Identity-based encryption is a promising cryptographical primitive to build a practical data sharing system. However, access control is not static. That is, when some user’s authorization is expired, there should be a mechanism that can remove him/her from the system. Consequently, the revoked user cannot access both the previously and subsequently shared data. To this end, we propose a notion called revocable-storage identity-based encryption (RS-IBE), which can provide the forward/backward security of ciphertext by introducing the functionalities of user revocation and ciphertext update simultaneously. Furthermore, we present a concrete construction of RS-IBE, and prove its security in the defined security model. The performance comparisons indicate that the proposed RS-IBE scheme has advantages in terms of functionality and efficiency, and thus is feasible for a practical and cost-effective data-sharing system. Finally, we provide implementation results of the proposed scheme to demonstrate its practicability.

EXISTING SYSTEM:
Boneh and Franklin first proposed a natural revocation way for IBE. They appended the current time period to the ciphertext, and non-revoked users periodically received private keys for each time period from the key authority.

Boldyreva, Goyal and Kumar introduced a novel approach to achieve efficient revocation. They used a binary tree to manage identity such that their RIBE scheme reduces the complexity of key revocation to logarithmic (instead of linear) in the maximum number of system users.

Subsequently, by using the aforementioned revocation technique, Libert and Vergnaud proposed an adaptively secure RIBE scheme based on a variant of Water’s IBE scheme.

Chenet al. constructed a RIBE scheme from lattices.

DISADVANTAGES OF EXISTING SYSTEM:

- Unfortunately, existing solution is not scalable, since it requires the key authority to perform linear work in the number of non-revoked users. In addition, a secure channel is essential for the key authority and non-revoked users to transmit new keys.
- However, existing scheme only achieves selective security.
- This kind of revocation method cannot resist the collusion of revoked users and malicious non-revoked users as malicious non-revoked users can share the update key with those revoked users.
- Furthermore, to update the ciphertext, the key authority in their scheme needs to maintain a table for each user to produce the re-encryption key for each time period, which significantly increases the key authority’s workload.
PROPOSED SYSTEM:

- It seems that the concept of revocable identity-based encryption (RIBE) might be a promising approach that fulfills the aforementioned security requirements for data sharing.
- RIBE features a mechanism that enables a sender to append the current time period to the ciphertext such that the receiver can decrypt the ciphertext only under the condition that he/she is not revoked at that time period.
- A RIBE-based data sharing system works as follows:
 - Step 1: The data provider (e.g., David) first decides the users (e.g., Alice and Bob) who can share the data. Then, David encrypts the data under the identities Alice and Bob, and uploads the ciphertext of the shared data to the cloud server.
 - Step 2: When either Alice or Bob wants to get the shared data, she or he can download and decrypt the corresponding ciphertext. However, for an unauthorized user and the cloud server, the plaintext of the shared data is not available.
 - Step 3: In some cases, e.g., Alice’s authorization gets expired, David can download the ciphertext of the shared data, and then decrypt-then-re-encrypt the shared data such that Alice is prevented from accessing the plaintext of the shared data, and then upload the re-encrypted data to the cloud server again.

ADVANTAGES OF PROPOSED SYSTEM:
We provide formal definitions for RS-IBE and its corresponding security model;

We present a concrete construction of RS-IBE.

The proposed scheme can provide confidentiality and backward/forward secrecy simultaneously

We prove the security of the proposed scheme in the standard model, under the decisional ℓ-Bilinear Diffie-Hellman Exponent (ℓ-BDHE) assumption. In addition, the proposed scheme can withstand decryption key exposure.

The procedure of ciphertext update only needs public information. Note that no previous identity-based encryption schemes in the literature can provide this feature;

The additional computation and storage complexity, which are brought in by the forward secrecy, is all upper bounded by O(log(T)²), where T is the total number of time periods.
SYSTEM ARCHITECTURE:

![Diagram showing system architecture](image)

SYSTEM REQUIREMENTS:

HARDWARE REQUIREMENTS:

- System : Pentium Dual Core.
- Hard Disk : 120 GB.
- Monitor : 15” LED
- Input Devices : Keyboard, Mouse
- Ram : 1GB.
SOFTWARE REQUIREMENTS:

- Coding Language : JAVA/J2EE
- Tool : Netbeans 7.2.1
- Database : MYSQL

REFERENCE: